Search results for "Stochastic flows"

showing 2 items of 2 documents

Additive functionals and push forward measures under Veretennikov's flow

2014

16 pages; In this work, we will be interested in the push forward measure $(\vf_t)_*\gamma$, where $\vf_t$ is defined by the stochastic differential equation \begin{equation*} d\vf_t(x)=dW_t + \ba(\vf_t(x))dt, \quad \vf_0(x)=x\in\mbR^m, \end{equation*} and $\gamma$ is the standard Gaussian measure. We will prove the existence of density under the hypothesis that the divergence $\div(\ba)$ is not a function, but a signed measure belonging to a Kato class; the density will be expressed with help of the additive functional associated to $\div(\ba)$.

[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]010104 statistics & probability[MATH.MATH-PR] Mathematics [math]/Probability [math.PR]010102 general mathematicsstochastic flowsAdditive functionalsmeasures in Kato class0101 mathematics01 natural sciencesAMS 2000 subject classifications. Primary 60H10; secondary 60J35 60J60.[ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR]
researchProduct

Stochastic differential equations with coefficients in Sobolev spaces

2010

We consider It\^o SDE $\d X_t=\sum_{j=1}^m A_j(X_t) \d w_t^j + A_0(X_t) \d t$ on $\R^d$. The diffusion coefficients $A_1,..., A_m$ are supposed to be in the Sobolev space $W_\text{loc}^{1,p} (\R^d)$ with $p>d$, and to have linear growth; for the drift coefficient $A_0$, we consider two cases: (i) $A_0$ is continuous whose distributional divergence $\delta(A_0)$ w.r.t. the Gaussian measure $\gamma_d$ exists, (ii) $A_0$ has the Sobolev regularity $W_\text{loc}^{1,p'}$ for some $p'>1$. Assume $\int_{\R^d} \exp\big[\lambda_0\bigl(|\delta(A_0)| + \sum_{j=1}^m (|\delta(A_j)|^2 +|\nabla A_j|^2)\bigr)\big] \d\gamma_d0$, in the case (i), if the pathwise uniqueness of solutions holds, then the push-f…

Discrete mathematicsPure mathematicsOrnstein–Uhlenbeck semigroupLebesgue measureSobolev space coefficientsProbability (math.PR)Density60H10 (Primary) 34F05 (Secondary) 60J60 37C10Density estimatePathwise uniquenessGaussian measureLipschitz continuitySobolev spaceStochastic differential equationStochastic flowsGaussian measureBounded functionFOS: Mathematics: Mathematics [G03] [Physical chemical mathematical & earth Sciences]Vector fieldUniqueness: Mathématiques [G03] [Physique chimie mathématiques & sciences de la terre]AnalysisMathematics - ProbabilityMathematics
researchProduct